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A computational inverse technique for identifying sti!ness distribution in structures is
proposed in this paper using structural dynamics response in the frequency domain. In the
present technique, element sti!ness factors of the "nite element model of a structure are
taken to be the parameters, and explicitly expressed in a linear form in the system equation
for forward analysis of the harmonic response of the structure. This o!ers great convenience
in applying Newton's method to search for the parameters of sti!ness factor inversely, as the
Jacobian matrix can be obtained simply by solving sets of linear algebraic equation derived
from the system equation. Examples of identifying sti!ness factor distribution which is often
related to damage in the elements of the structure are presented to demonstrate the present
technique. The advantages of the present technique for inverse parameter identi"cation
problem are (1) the number of the parameters can be very large; (2) the identi"cation process
is very fast and (3) the accuracy is very high. The e$ciency of the proposed technique is
compared with genetic algorithms.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Identi"cation of parameters of structural systems in engineering is of considerable
importance in practice due to the increasing demands for assessment of integrity and
reliability of structures. Non-destructive testing techniques used for this purpose are based
on the measurement of the dynamic characteristics of structures, i.e., dynamic responses,
modal parameters and wave scattering characteristics of the structures [1, 2]. These
dynamic characteristics of structures are related to the structural parameters in a forward
relationship established using analysis models. That is, for given parameters these dynamic
characteristics can be estimated through a mathematical model in forward analysis. Explicit
inverse relationship can only be found in some speci"c cases. In general, it is impossible to
"nd explicit inverse relationship. Thus, a computational technique is often required to solve
inverse problems to reconstruct the structural parameters based on a given model.
However, the inverse analysis is much more di$cult in comparison with the forward
analysis, because of its non-linear and ill-pose nature of the problem.

Considerable work has been done in the area of structural parameters identi"cation
based on inverse computational techniques, especially for parameters which are di$cult or
even impossible to be measured accurately using traditional experimental techniques. These
structural parameters include material constants of anisotropic material, constraints
sti!ness of the boundary, #aw and/or cracks involved in structures during serving and
manufacturing, etc. Liu and Han [3] have inversely determined material properties of
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



824 G. R. LIU AND S. C. CHEN
functionally graded material which is di$cult to be experimentally determined.
Balasubramaniam and Rao [4] and Liu et al. [5] have reconstructed material constants of
homogeneous laminated composite materials using elastic wave responses. The anisotropic
material constants of composite material can also be inversely identi"ed using structural
vibration properties such as modal parameters [6, 7]. Using elastic wave scattering in
structures, it is also possible to inversely determine cracks in a composite laminates [8, 9].
In determination of #aw and damage in structures, the damage parameters are generally
related to the sti!ness reduction as discussed by ArauH jo dos Santos et al. [10], Bicanic and
Chen [11] and Chen and Bicanic [12]. Discretizing the structure with a number of "nite
elements, the sti!ness distribution in the structure can thus be expressed by the element
sti!ness factor or damage factor. In solving this type of problems, the di$culty is the large
number of parameters. ArauH jo dos Santos et al. [10] derived a sensitivities matrix of the
eigenvalues with respect to the damage factors of element from the orthogonality condition
of the mode shapes. Thus, the element sti!ness factors can be solved through a set of linear
equation using the measurements of natural frequencies and mode shapes. With no
previous knowledge of damaged areas and locations, this method allows the identi"cation
of multiple damages when enough modal parameters are known. Bicanic and Chen [11]
proposed a procedure for the damage identi"cation of framed structures using only
a limited number of measured natural frequencies. Based on the characteristic equation of
the original and damaged structure, a set of equations is formulated corresponding to
a di!erence change in the sti!ness matrix, and it is solved by the direct iteration and
Gauss}Newton techniques. In general, when solving an inverse problem of structural
parameter identi"cation, it is simply formulated as an objective function given by
a weighted sum of squared di!erences between the measured data and the corresponding
simulated value of the dynamic properties of structures. With this formulation, the inverse
reconstruction can be solved by means of optimization methods to minimize the objective
function. As the complexity of the objective function, genetic algorithms (GAs) have been
widely used as a searching technique for such di$cult and non-linear problems without
sensitivity analysis and initial guess [4, 7, 13]. Another very important advantage of GAs is
the convergence property to the global optimal of the solution. However, it is
computationally extensive and it su!ers from slow convergence rate at later stage due to the
nature of random searching. For problems with large number of parameters to be identi"ed,
use of GA becomes impractical, especially when the forward analysis is time consuming.

In this study, an error function is de"ned in a form of nonlinear implicit equations of
unknown parameters which give the di!erence between numerically predicted results and
measured values of the harmonic response of structures. Newton's method is applied
iteratively to search for the parameters which is the solution of the root of the error
function. With a "nite element model of a structure, the simulated harmonic response at
certain frequency is computed in forward analysis and the Jacobian matrix can also be
obtained by solving a set of linear equations derived from the forward system equation. It is
found that the proposed method can be used to solve problems with large number of
parameters to be identi"ed. Examples and comparison with a GA-based search scheme
demonstrate the high e$ciency and excellent accuracy of the proposed technique.

2. FINITE ELEMENT FORMULA IN FORWARD ANALYSIS

In this study, we consider a general "nite element model of a linear-elastic structure. The
dynamic governing equation is given by

[M]�d$ �#[K]�d�"�F� , (1)



NOVEL TECHNIQUE FOR IDENTIFICATION OF STIFFNESS FACTOR 825
where [K] and [M] are global sti!ness matrix and mass matrix, respectively, �d� is the
global nodal displacement vector and �F� the nodal load vector. With this equation, the
structure dynamic properties such as responses and modal parameters can be obtained for
given sti!ness, mass matrix and load vector.

For a harmonic excitation �F�"�P�ei��, the harmonic displacement response can be
written as

�d�"�u�ei�� , (2)

where �u� is the vector of displacement amplitude. Equation (1) for harmonic excitation can
be written as

�[K]!��[M]� �u�"�P� . (3)

For modal properties analysis, the characteristic equation used to determine the modal
parameters of the structure can be written as

([K]!��[M])����"0, (4)

where �� and ���� are the � th eigenvalue and the corresponding eigenvector (mode shape)
of the structure.

The global sti!ness matrix of a structure is an assembly of the elements' sti!ness matrix,
and for isotropic elastic material, the element sti!ness matrix is always proportional to the
elastic modulus of the material and the geometric coe$cient, which are unknown
parameters in an inverse analysis. Thus the global sti!ness is expressed as

[K]"
�
�
���

x�[K
�
]�, (5)

where N is the total number of elements, x� (i"1,N ) the unknown parameters of elastic
modulus or element sti!ness factor and the element sti!ness [K

�
]� is obtained by assuming

a unit factor. In general, the element sti!ness factor x� (i"1,N) re#ects the degree of
damage in the element of a damaged structure. Substituting equation (5) into equations (3)
and (4), we have

�
�
�
���

x�[K
�
]�!��[M]��u�"�P� (6)

and

�
�
�
���

x�[K
�
]�!��[M]�����"0. (7)

Note that � and �P� are known for the given excitation force. Mass matrix [M] is known
for the given material for the structure. [K

�
]� is also known once the "nite element mesh is

given. For an assumed set of x�, �u� can therefore be computed without any di$culty and so
can the modal parameters.

3. INVERSE IDENTIFICATION FORMULATION

In Forward analysis, the displacement response and modal parameters of a "nite element
system can be predicted using equations (6) and (7) with given parameters x� (i"1,N).
However, in inverse analysis, the parameters are needed to be identi"ed using the measured
value of the displacement response or modal parameters. That is, parameters are chosen
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such that they "t the experiment data. There are twomethods to "t these data. One is simply
using the least-squares method which minimizes the square error sum; the other is the
sensitivity based analysis method which has di!erent formulation for di!erent problems
considered and it is often obtained approximately, neglecting the second order of the
variation.

3.1. OBJECTIVE FUNCTION

The commonly used objective function is de"ned using the weighted sum of squared
di!erences between the measured data and the corresponding simulated value of the
dynamic properties of structures.

E(x)"
�
�
���

=
�
( f

�
(x)!f

��
)� , (8)

where l is the total number of measurements, x is the vector of unknown parameters
(x�, x�, 2 , x� )�, f

��
is the measured value and f

�
(x) the corresponding simulated value for

a trial x and=
�
the weight factor. The measured values of a structure can be the responses,

natural frequencies and the values of modal assurance criterion (MAC) [14] that is related
to the mode shapes.

3.2. PROPOSED DIRECT FORMULATION

Sensitivity-based formulation derived from modal parameters has been used to solve the
parameters, which is a little complicated and often approximate. Here a formulation is
proposed using harmonic response. For a "nite element model with n elements,
n displacements at di!erent nodes on the structure can be measured, and expressed in
a vector form of �uN �. The identi"cation problem is to determine the element sti!ness factor
vector x in equation (6) using the measured response �uN �. That is, to "nd x that satis"es

[Q]�u�"�uN �, (9)

where [Q] is a constant matrix with elements of zeros or ones, which selects the degrees of
freedom corresponding to the measured displacement components. Vector �u� is solved
from equation (6) for a given x.

De"ne an error function of

f (x)"[Q]�u�!�uN �"0 , (10)

where

f (x)"�
f
�
(x�, x�2 x�)

f
�
(x�, x�2 x�)

�

f
�
(x�, x�2 x�)�, (11)

x"(x�, x�2 x�)� .

Here, f(x) is a set of non-linear implicit equation with respect to the parameters. The value
of f(x ) and its derivation can be evaluated through equation (6). Thus, the solution of
equation (10) can be solved directly using Newton's method numerically.
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4. INVERSE COMPUTATIONAL TECHNIQUE

4.1. OPTIMIZATION METHOD

Based on the objective function, the identi"cation problem can be solved by optimization
techniques to search for the parameters which minimize the objective function. Classical
gradient technique such as the least-squares optimization method and direct search scheme
like genetic algorithms (GAs) has been used to "nd parameters which minimize the
objective function.

4.2. NEWTON'S METHOD

For the proposed error function, Newton's method is used directly to solve the nonlinear
system for the parameters. Newton's method uses an iterative process to approach a root of
a function f (x). Beginning with an initial trial value of x

�
, the succeeding solution is

obtained through

x
���

"x
�
!

f (x
�
)

f � (x
�
)
, (12)

where x
�
is the solution obtained in the previous iteration, f(x

�
) and f �(x

�
) represent the

value of the function and its derivative at x
�
, respectively, and x

���
the current iteration

result. When x
�
converge to a value, it will be a root of the function.

For non-linear equation system f(x)"0 ( f
�
(x�, 2 x�)"0, i"1, n), in the R�, a similar

iteration formula is given below

xk#1"xk!J��(xk) f (xk) , (13)

where J(x) is the Jacobian matrix of the system equations given below

J(x)"

�f
�

�x�
�f

�
�x�

2 2

�f
�

�x�

�f
�

�x�
�f

�
�x�

2 2

�f
�

�x�

� � �

�f
�

�x�
�f

�
�x�

2 2

�f
�

�x�

and x
�
is the solution obtained in the previous iteration, f (x

�
) and J (x

�
) represent the value

of the functions and its Jacobian matrix at x
�
, respectively, and x

���
the current iteration

result. Starting with an initial guess x
�
, equation (13) is expected to converge to a solution of

equation (10). The iteration stops when speci"ed accuracy reached:

	xk#1!xk	)
 .

It is to be noted that to ensure equation (13) is determined, the number of measurements
should equal the number of parameters. In this case, Newton's method can get the solution
very fast if it converges. However, it has the local convergence properties and may not
converge or converge to values which exceed the physically de"ned validity region when
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started from certain initial guess. To improve the performance of Newton's method while
remaining in the fast convergence rate, a modi"cation is made to correct the iteration
stepsize when necessary.

xk#1"xk!(J(xk)#��)��f (xk) , (14)

where �� is a diagonal matrix, it is chosen such a way as to ensure that 	f(x)	P0 and make
the solution converge.

To ensure that the solution falls into the physically feasible region, an upper and lower
bound is applied to constrain the parameters:

xl)x)xu .

Here xl and xu are the lower and upper bounds respectively.

5. CALCULATION OF JACOBIAN MATRIX

The Newton's method requires the calculation of Jacobian matrix, the derivatives of
displacements with respect to the unknown parameters, element sti!ness factors x. The
Jacobian matrix can be obtained e$ciently by taking advantage of the linear expression of
x� in equation (6). Performing di!erentiations on both sides of equation (6) with respect to
each parameter x� leads to

[K
�
]��u�#�[K]!��[M]��

�u
�x��"0 (i"1, N) . (15)

In equation (15), vector �u� is solved from equation (6) in forward analysis. So equation (15)
can be written as

�[K]!��[M]��
�u
�x��"![K

�
]��u� (i"1, N) . (16)

Thus, the derivative ��u/�x�� can be solved from the above linear algebraic equation system
which is in the same form as equation (6). For i"1, N, the Jacobian matrix is obtained by
multiplying matrix [Q].

6. PROCEDURE OF ITERATION

Starting with an initial guess x
�
, the procedure of iteration is given as follows:

Step 1: Solve equation (6) at x
�
for �u� and then compute the value of error function

f(xk)"[Q] �u�!�uN � . (17)

Step 2: Solve equation (16) at x
�
for ��u/�x�� and obtain the Jacobian matrix. In solving

equation (16), the right side vector is formed as &&a pseudo-load vector'' "rst by using the
response obtained above, the coe$cient matrix has been factorized in Step 1 for forward
analysis, the derivation vector is then obtained by back-substitution of the pseudo-load
vector.
Step 3: Find x

���
by Newton's method using equation (13). In practice, xk�1 is obtained

by solving the linear equation system

J(xk)(xk�1!xk )"f (xk) (18)

Step 4: Repeat Steps 1}3 until 	x
���

!x
�
	(tolerance.
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Figure 2. Non-uniform sti!ness beam and its "nite element model.
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Figure 1 shows the #owchart of the procedure.

7. EXAMPLES AND DISCUSSION

7.1. CANTILEVER BEAMS

In order to verify the proposed technique, the cantilever beam shown in Figure 2 is
considered. It is discretized into 20 beam elements. Hence, there are 20 unknown
parameters that represent the sti!ness factors of elements. It is related to the material
constant and/or second moment of the section area. The element sti!ness factor to be
identi"ed is given in the tables. The mass density is �"7)8�10� kg/m�, and the second
moment of section area is I

	
"0)8�10�� m	. The excitation is a time harmonic load at the

free tip of the beam with a frequency of �"100 rad/s. The measured de#ection amplitude
at 20 nodes is simulated using computational analysis results for the given true parameters.

In case 1, a piecewise uniform sti!ness distributed beam is considered, and the true
sti!ness factors are given in Table 1. We start the iteration from an initial guess x

�
that takes



TABLE 1

Element sti+ness factors

Element number 1}5 6}10 11}15 16}20

Sti!ness factor 2)1 1)5 2)1 1)5
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Figure 3. Sti!ness distribution of elements (case 1).

TABLE 2

Element sti+ness factors

Element number 1}2 3}4 5}6 7}9 10}20

Sti!ness factor 2)1 1)8 2)1 1)05 2)1
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uniform value of 2)1 (undamaged sti!ness factor) for all the parameters. It converges to the
solution very fast, and the results are shown in Figure 3. The results are in very good
agreement with the true values given in Table 1. The same results can be obtained for
di!erent values of �.

In case 2, a damaged beam with two damaged locations is considered. The true sti!ness
factors are given in Table 2. The damage factor ��



of the ith element is de"ned as the

deduction of the element sti!ness, and can be obtained from the sti!ness factor.

��


"�1!

x�

x� , (19)

where x represents the value of undamaged sti!ness factor. The damage in elements 3, 4 and
7}9 is successfully detected as shown in Figure 4.
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Figure 4. Sti!ness distribution of elements (case 2).

TABLE 3

Element sti+ness factors

Element number 1}2 3 4 5 6}20 21}25 26}50

Sti!ness factor 2)1 1)8 1)5 1)2 2)1 1)5 2)1
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Figure 5. Sti!ness distribution of elements (case 3).
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In case 3, the same beam is now discretized into 50 elements and the sti!ness distribution
is represented by 50 parameters. Table 3 shows the true element sti!ness factor. The results
are obtained very fast and accurate as shown in Figure 5. The results also indicate clearly
the damage status or the sti!ness distribution of the beam in terms of the sti!ness factor.
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Figure 6. Beam with one damage location.
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The examples have shown that the proposed inverse technique is suitable for problems
with large number of parameters to be identi"ed. It takes only seconds of CPU time to
obtain a high accurate result for the beam structure considered. It can be applied to damage
detection problems involving multiple distributed defects with arbitrary degree of damage
accurately. However, like the gradient-based optimization algorithm, the initial guess may
a!ect the iteration progress. For suitable initial guesses, identical results can be obtained. It
should also be pointed out that the frequency of the exciting force could not be close to the
natural frequency of the structure in case equation (16) becomes singular and the inverse
procedure fails because of no damping terms being considered.

7.2. COMPARISON STUDY WITH GAS

In order to compare the performance of the proposed technique with genetic algorithm,
the same beam as shown in Figure 1 is considered. A micro-GA (�GA) with an elitist
strategy has been applied to the sti!ness factor identi"cation (damage detection). The
population is taken to be 5 in each generation while the probability of uniform crossover is
set to be 0)5. The objective function (8) is employed for "tness evaluation with harmonic
response of de#ection taken as input. The sti!ness factors of 20 elements are taken as the
parameters to be identi"ed. In GAs, these parameters are required to be discretized
according to the accuracy needed. When all the parameters are discretized into 8 grades in
the range of 0)63}2)1, the discrete search space contains 2
� candidates. It is found that for
such a great number of possibilities, the CPU time spent is excessively long due to the
random nature of GAs and the time consumed in the forward analysis. In order to decrease
the number of parameters, the beam including one damage location with only 1}4 elements
damaged is assumed. The damage degrees of these elements are discretized into 8 grades.
This decreases the discrete search space to contain 2� candidates and makes the search
e$ciently. As an example, the beam including one damage location shown in Figure 6 is
considered. The damage is located in elements 3 and 4 with sti!ness deduction factor
�


"0)5. It takes 30 generations to obtain the solution. The CPU time consumed is 40 s.

When the proposed technique is employed to the same problem, it takes only about 1)5 s.
This veri"ed the e$ciency of the proposed technique over GAs for problems with multiple
continue variables as parameters and analytical to the variables. Another advantage of the
proposed technique over GAs is that the GAs' accuracy is limited to the possibilities to
discretize the parameters. In order to increase the accuracy of GAs, more possibilities are
required to discretize the parameters and more generations are required to search for the
solution.

7.3. PLATES

The technique developed here is general; it can be easily extended to other types of "nite
element structures. The following example shows its application to plate structures. The
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Figure 7. Simply supported square plate.

TABLE 4

Element sti+ness factors

Element number 27}28 52 53 62 63 The rest

Sti!ness factor 1)5 1)6 1)8 1)2 1)5 2)1
Damage factor 0)286 0)238 0)143 0)429 0)286 0
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simply supported plate with several elements deducted in sti!ness is given in Figure 7. It is
divided into 100 elements and simulated using eight-noded isoparametric quadratic plate
element. Nodal de#ection response under harmonic excitation is taken as the measurements
which is simulated numerically. The true element sti!ness factor is given in Table 4. Once
again the sti!ness factors of the elements are identi"ed accurately as shown in Figure 8. In
Figure 8, a damage factor is employed instead of a sti!ness factor.

7.4. CANTILEVER BEAM WITH MEASUREMENT ERROR

The e$ciency and accuracy of the proposed technique has been demonstrated through
the above examples without considering the random measurement errors. To study the
e!ect of the random measurement errors on the parameters identi"cation, a normally
distributed error with zero mean and constant standard deviation is added to the measured
value. Taking the beam considered in case 2 as an example, we considered several cases of
randomly produced error with the same zero mean and same deviation. When adding these
errors to the measured responses, respectively, only in some cases we can obtain good result
as shown in Figure 9. In some cases, we fail to get any results. This means that the proposed
technique is error sensitive because of no regularization.

In our study, we proposed an inverse procedure-based numerical method. It has been
veri"ed analytically. However, to apply the proposed method to solve practical problems,
some consideration and modi"cation are required. First of all, the forward analysis model
of structural system should be carefully considered to simulate the practical system as
accurately as possible or correction to the di!erence between simulated and practical
responses should be made. For example, damping terms and supports sti!ness of boundary
should be considered. Another important problem considered is the measuring error. For
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Figure 9. Sti!ness distribution of elements (with measurement error).
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considering measurement error, Gauss}Newton method should be used instead where the
number of measured data is more than the number of parameters. Gauss}Newton method
gives the estimation of the parameters based on the minimization of the least squares of the
error norm. It is expected to be robust to random errors of measurement.

8. CONCLUSION

A novel inverse technique has been proposed and implemented for the identi"cation of
distributed sti!ness factor and damage parameters in a structure. The measurement of
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harmonic response to the excitation is used in the present technique. The proposed method
based on a set of implicit equations, and Newton's iteration method is applied to "nd the
solution which "ts the measured data with predicted result. It converged to the true solution
much faster in comparison with random-based GAs. Examples veri"ed the accuracy and
e$ciency of the proposed method for problems with large number of parameters to be
identi"ed. However, improvements are required to apply it to practical problems.
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